X-band metamaterial absorbers based on reduced graphene oxide-silicon carbide-linear low density polyethylene composite
نویسندگان
چکیده
منابع مشابه
Dual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies
In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...
متن کاملElectrically and Electrochemically Active Composite Based on Polyester/Reduced Graphene Oxide/Polypyrrole with Remarkable Washing Durability
متن کامل
Oxygen-barrier films based on low-density polyethylene/ ethylene vinyl alcohol/ polyethylene-grafted maleic anhydride compatibilizer
In this research, high oxygen-barrier films were organized based on low-density polyethylene (LDPE)/ ethylene vinyl alcohol (EVOH)/ polyethylene-grafted maleic anhydride (LDPE-g-MA) compatibilizer. The effects of 10–30 wt. % EVOH and 0–10 wt. % LDPE-g-MA loadings on the properties of final films were evaluated. The morphology of specimens was observed by using scanning electron microscopy (SEM)...
متن کاملA composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors
A hybrid nanostructure based on reduced graphene oxide and ZnO has been obtained for the detection of volatile organic compounds. The sensing properties of the hybrid structure have been studied for different concentrations of ethanol and acetone. The response of the hybrid material is significantly higher compared to pristine ZnO nanostructures. The obtained results have shown that the nanohyb...
متن کاملSilicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density
Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge-discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EPJ Applied Metamaterials
سال: 2020
ISSN: 2272-2394
DOI: 10.1051/epjam/2020008